Dear AP Chemistry Students,

I am so excited that you're enrolled in AP Chemistry for the 2022-2023 school year with me and that I have the opportunity to teach you for another year! This is a challenging class that requires dedication, hard work, and a love for chemistry. I know you'll have a great time learning this advanced material!

AP Chemistry is a second-year chemistry course. That means that we will be spending our time learning new material, and very little time reviewing the basics and topics we covered in Honors Chemist ry. However, those basics are very important, and we cannot forget all of the things we learned! To help you remember and review, please complete this review packet over the course of the summ er. It includes notes from Honors Chemistry and practice problems. Additionally, I have included some helpful advice from past AP Chemistry students. Please do not attempt to complete this all at once - it will serve your brain better to work on it a little bit every few days.

At the end of the first week of class, I will take this packet as a completion grade and we can review any questions you may have. At the end of the second week of class, I will take this packet as a grade based on accuracy. This packet will count as your first test grade in AP Chemistry - the easiest A you'll make and a good start to theyear! If you make the effort to review the topics in this packet, I anticipate you'll be very successful the rest of the year.

I will be available by email at J essica.menaspy @1 ut her an s outh.or should you want to ask me questions as you (re)work your way through Honors Chemistry material.

Blessings on your summer,

1	PERIODIC TABLE OF THE ELEMENTS																$\left\|\begin{array}{c} 18 \\ -2 \\ \mathrm{He} \\ \text { He } \\ \text { tixi } \end{array}\right\|$
$\begin{array}{r} \mathbf{H} \\ 1.00 \end{array}$	2													15	16	17	
'	4											5	6	7	8	9	Jо
Li	Be											B	C	N	0	F	Ne
n. 94	u.U!											lo 81	12	1401	16.00	1900	2018
11	12											u	14	! 5	16	17	18
Na	Mg											AI	Si	p	S	CI	Ar
22.91)	24.00	3	4	5	6	7	8	9	10	11	12	26\%	28.09	30	32.06	5	39
19	20	21	22	::.:,		25	26	27	28	29	30	'I	:2	33	34	: s	:,6
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	NH^{\prime}	Cu	Zn	Ga	Ge	As	Se	Br	Kr
-10.J0	J.0.0x	jiflu1	47.1.7	5.1.). j j	.52.00	! 54.94	5.85	58.9.1	55.6]	6, 55	65.3!	69.72	22.63	7-vJ2	. 78.97	7919	R. 58
37	38	39	4 U	41	42	41	44	45	46	47	48	49	5)	51	52	53	54
Rb	Sr	y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	(n	Sn		! Te	J_{5}	Xe
$\begin{array}{r}\text { 5', } \\ \hline 85.4 \\ \hline 8\end{array}$	${ }_{\text {- }}^{\text {- }}$	7 8891	72	${ }^{73}$ 92.JI	${ }^{74}$	$7 \ldots$	76 101	.112.11		:079 ${ }^{\text {7 }}$ (${ }_{\text {J }}^{\text {S } 2-41}$	${ }^{814 . \mathrm{U}}$!18.71	11.76 i	127.(10	${ }_{12 \text { h. } 90}$	1. ${ }^{\text {X }}$. 2.9
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
12.91	137.3	138.(1)	178.49	180.05	182.84	16.21	190.2	192.2	195.0	1\%,97	200.59	204. 1 1x	207.2	208.98	(220.J)	(210)	
N7	8 X	:9	104	105	106	JI7	101:-	เบ9	110	III	112	JU	114	I 15	110	117	1 N
Fr	Ra	tAc	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg.	Cn	Uut	fl	Uup	Lv	Uus	Uuo

*1.anthanoid Serie	8	1)	60	61	62	63	64	65	66	67	68	6.11	-- 70	71
		$!$		$S \mathrm{~mm}$		Fum		-18			F-9 Th			Lu
	14	1	144.24	(14:3ii	150.4	151.97	157.25	158.ن.ن.1.	162.50	164.93	167.26	16i:93	$\underline{173.05}$	174.97
	90	91	92	93	94	95	\%	97	08	99	100	JOI	102	103
$t_{\text {Actinoid Series }}$	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.14	231.04	$2 \cdot 18.113$	1271	(244)	(2-43)	1247.	${ }_{\text {r247J }}$	$\underline{12.511}$	2521	$\underline{\text { £257i }}$	225i=1	12591	cY12i

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbol:,; have the definitions specified unless otherwise noted.

L.mL	$=\operatorname{liter}(\mathrm{s}), \operatorname{milliliter}(\mathrm{s})$	mm Hg	$=$ millimeters of mercury
0	$=\operatorname{gram}(\mathrm{s})$	$\mathrm{J} . \mathrm{kJ}$	$=$ joule(s), kilojoule(s)
nm	$=$ nanometer(s)	V	$=$ volt(s)
atm	$=\operatorname{atmosphere}(\mathrm{s})$	rnol	$=$ mole(s)

ATOMIC STRUCTURE $\begin{aligned} & E=h F \\ & c=A v \end{aligned}$	$\begin{gathered} E=\text { energy } \\ V=\text { frequency } \\ 14=\text { wavelength } \\ \text { Planckls constant./, }=6.626-\ldots \mathrm{JO} " \mathrm{l} \cdot \cdot \mathrm{l} . .!\mathrm{J} \mathrm{~J} \mathrm{~s} \\ \text { Speed of light. } c=2.998 \times 10^{8} \mathrm{~ms} \\ \text { Avogadro's number }=6.022 \times 10^{23} \mathrm{mol.."1} \\ \text { Electron charge, } e=-1.602 \times 10-{ }^{19} \text { coulomb } \end{gathered}$
EQUJLIBRJUM	Equilibrium_Constants Kc (molar concentrations) K_{11} (ga.., pressures) K., (weak acid) K1i (weak hasc) $K w$ (water)
KINETICS $\begin{gathered} \ln \left[\mathrm{AJ},-\ln \left[\mathrm{A} \mathrm{~J}_{0}=-k t\right.\right. \\ \frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}}=k t \end{gathered}$	$\begin{aligned} k & =\text { rate constant } \\ t & =\text { time } \\ \prime v_{2} & =\text { half-life } \end{aligned}$

Common Polyatomic Ions

AP Chemistry Summer Review Part I: Physical \& Chemical Changes, Matter \& Energy

1. Label each as either physical or chemical change.
a. corrosion of aluminum metal by hydrochloric acid
b. melting wax
c. pulverizing an aspirin tablet
d. digesting a Three Musketeers® bar
e. explosion of nitroglycerin
f. a burning match
g. metal warming up, due to the burning match
h. water vapor condensing on the metal
i. the metal oxidizes, becoming dull and brittle
j. salt being dissolved by water
2. For each process described, state whether the material being discussed (in bold) is a mixture or compound, and state whether the change is physical or chemical.
a. An orange liquid is distilled (boiled to separate components with different boiling points), resulting in the collection of a red solid and a yellow liquid.
b. A colorless, crystalline solid is decomposed, leaving a pale yellow-green gas and and a soft, shiny metal.
c. A cup of tea becomes sweeter as sugar is added to it.
3. Classify each as mixture (homogeneous or heterogeneous) or pure substance (elements or compounds).
a. water
b. blood
c. the oceans
d. iron
e. brass (an alloy of zinc and copper)
f. wine
g. sodium bicarbonate (baking soda)
4. Explain how the five states of matter and energy are related. (HINT: Think of the motion of the particles!)
5. Consider the burning of gasoline and the evaporation of gasoline. Which represents a physical change and represents a chemical change? Give the reason for your answer.
6. A) Label the arrows on the diagram below with the correct phase change processes. B) Draw a particle diagram representing each phase.

Solid
Liquid
Gas
7. Describe the three main intermolecular forces and explain how their relationship is important in determining a compound's state of matter at a particular temperature. This is a major concept on the AP Chem Exam!

AP Chemistry Summer Review Part II: Uncertainty in Measurement and Calculations:

1. Exact Numbers:

Counted numbers and definitions do not involve any measurement and are considered as exact numbers with an infinite number of significant figures. Do not consider them when determining significant figures for your final answer.

Definitions: 1 week = 7 days.
1 mile $=5,280$ feet
1 yard = 3 feet

Counted: 5 Players on the basketball court.
23 students in a room
25 pennies used by a class in an experiment.

2. Measured Numbers:

All measured numbers have some degree of uncertainty.

When recording measurements, record only the significant figures. Record measurements to include one decimal estimate beyond the smallest increment on the measuring device.

Examples (consider a measuring instrument like a ruler):

\Rightarrow If smallest increment $=1 \mathrm{~m}$, then record measurement 00.1 m (i.e. 3.1 m)
If smallest increment $=0.1 \mathrm{~m}$, then record measurement to 0.01 m (i.e. 5.67 m)
\rangle If smallest increment $=0.01 \mathrm{~m}$, then record measurement to 0.001 m (i.e. 12.675 m)
c. Unless otherwise stated the uncertainty in the last significant figure (the uncertain digit) is assumed to be ± 1 unit. Modern digital instruments and many types of volumetric glassware will state the level of uncertainty.

3. Rules for counting Significant Figures.

a.Non-Zero Numbers: Non-zero numbers are always significant.
b. Zeros:

1: Leading zeros that come before the first non-zero number are never significant
2. Captive zeros (sandwich zeros) that fall between two non-zero digits are always significant.
3. Ending zeros that appear after the last non-zero digit are significant only when a decimal point appears somewhere in the number.

Examo es:

Number	0.005	5005	5005.00	500.	0.0050
Sig Figs	1	4	6	3	2

c. Scientific Notation: Significant figures are recorded in the mantissa (number $1 \mathrm{~s} x<10$) Examnles:

Number	3.0×10^{3}	5.998×10^{5}	6.00000×10^{-23}	0.5×10^{4}
Sig Figs	2	4	6	1

4. Rules for Using Significant Figures in Calculations

(a) Multiplication. Division. Powers and Roots:-"LEAST SIG.FIG RULE"

1. The result should be reported to the same number of significant figures as the measured number having the least number of significant figures.
2. Only consider the number of significant figures in each of the measured numbers! (not constants)

Ewmlple .:	
$\frac{1.6^{\circ} . \mathrm{YJO} \cdot 0\left(000-1^{\prime} \leq\right.}{\therefore!!\mathrm{YIO}-23}$ - calculator returns. $2.505000000: \mathrm{rr}^{20^{24}}$	Ew1111p!e3
1.6'.YIO' has 3 s,gjig.s	,/23 = coiclllaror retllrll., 1.516575089
0.00045 has:' stg)igs	
;,.,-10. ${ }^{3}$ has 1 slgfig	
1.0-x 10'. , 0.000-1,	,$/ 23=1.5$ rolllld mlslrer to 2 sig._f,gs
2:1"10-i:,	

(b) Addition and Subtraction: "LEAST PRECISE DECIMAL RULE"

1. The result should be reported with the same decimal precision as the measured number having the uncertain digit in the least precise decimal place.
2. Only consider the decimal precision in each of the measured numbers! (not constants)

Ew1111pie-1: $a-c$

EwnnplC' 5: Wnrch for 1111111bers endillg irith :ero! $10+0.011 \mathrm{O}=$ ca!cn/mor n:rurns 10.0110

10: rhe 1mcertai11 digit appcors ill the Jt $\} 1$ place
0.0110: rite (f!ftffftdn digit c ppears ill the 10- place
$10+0.011 \mathrm{O}=1 \mathrm{O}$ rouwlm1s,ffrtorl!'clO' plat('

Rmio!lai(': The rnKerfainty il1 rhe llkasured number 10 i:-, = 1 . The 1 mc rrninty .:1lo11e in the fir':it m1111be $\backslash 10) \mathrm{h}$ g:reakr tlwn the entire eCL)lld m1mber $(0.01 \mathrm{H})$).
a. $123 \mathrm{~cm}+5.3^{\prime}:^{\prime} \mathrm{cm}=128 \mathrm{~cm}$ (rounded to 10°)
b. $1.0001 \mathrm{l} 11+0.0003111=1.0004111$ (ra1111ded rol0-'J
c. $\quad l .002 \mathrm{~s}-0.998 \mathrm{~s}=\left(1.004 \mathrm{~s}\left(\right.\right.$ ro1111dcd ro $\left.10-{ }^{3}\right)$

Problems

How many significant figures in the following numbers:
1.
1,245m
2.
0.030 m
3. $10,000 \mathrm{~m}$
4. $\quad 1.340 \times 10^{23} \mathrm{~m}$
5. $\quad 3.02003 \times 10^{14} \mathrm{~m}$
6. 0.0000001 m
$7.1,000$.
$8 . \quad 0.10000010$

9: Convert the following numbers into standard scientific notation:
a. $96.3 \times 10^{4} g$
b. $0.05 \times 10^{23} s$ \qquad
C. $123 \times 10^{-7} \mathrm{~m}$ \qquad
Problems 10-18: Perform the following Calculations and record your answers in the proper number of significant figures and units.
10. $0.6030 \mathrm{~s}+0.82 \mathrm{~s}=$
11. $4.1 \mathrm{~m}+0.3789 \mathrm{~m}-153.22 \mathrm{~m}=$
12. $\frac{0.307 \mathrm{~g}}{\left(1.0 \times 10-{ }^{3}\right) \mathrm{ml}}$
13. $1 / \overline{1 / 5.33} \times 10^{5} \mathrm{~m}=$

Part II: Simple Metric Conversions and Consistent Units

Section 1: Metric Conversions
Fill in the chart below with the metric conversion units. Memorize the ones in bold type! An example is given:

Prefix	Symbol	Power of 10	Meaning
deci-	d	$10-1$	1 O times smaller than base unit
centi-			
milli-			
micro-			
nano-			
kilo-			

Make the following conversions - preserve the number of significant figures in the answer!

1. 450 nm \qquad mm
2. 34 km \qquad cm
3. 43000 mm \qquad km
4. $4.0 \times 10^{6} \mathrm{~nm}$ \qquad ,.m
$53.98 \times 10^{-3} \mathrm{~km}$ \qquad m
5. 456 mm \qquad km
7.080 m \qquad km
$8.4 .89 \times 10^{12} \mathrm{~mm}$
km
6. $2.68 \times 10^{6} \mathrm{~m}$ \qquad km \qquad $m m$

Unit Multiplication - Dimensional Analysis - Factor Labeling

Units:

In the world of mathematics numbers often exist as abstract and unit-less entities. However, in the world of physics and chemistry where numbers are based upon experimentation and measurement all numbers are based in a physical reality. As a result, every number consists of two important parts. The first is a magnitude and the second equally important part is a unit. It is the unit that gives physical, real-world meaning to the number. We never write one without the other!

Examples: Note that these are all "equivalencestatements"!

> 12 inches in one foot
> 365 days in one year
> 7 days in one week
> 1.0×10^{9} bytes in one gigabyte

Derived Units and Calculations

Many of the common units we use are actually derived units that result from performing mathematical operations on the basic units. When performing mathematical operations the units are treated and manipulated as if they were algebraic variables. Here are a few examples:

```
Area \(=(\) length \(-m) \mathbf{x}(\) width \(-m)=m^{2}\)
Volume \(=(\) length -m\() \mathbf{x}(\) width -m\() \mathbf{x}(\) height -m\()=\mathbf{m}^{3}\)
Velocity \(=(\) distance traveled -m\() /(\) time -s\()=\mathbf{m} / \mathbf{s}\)
Densitv= (mass - g)/(volume -ml ) \(=\mathbf{g} / \mathbf{m l}\)
```


Unit Conversions

It is often necessary to convert from one system of units to another. The most efficient way to do this is using a process known as "unit multiplication", "factor labeling"or "dimensional analysis".

"goal posting"

One useful version of this method is called "goal posting". Step 1: Draw a "goal post "with the horizontal bar extending on each side. Step 2: Place the original number and unit to the left. Place the final unit on the right. Step 3: Move the original unit (cm) from the top left (numerator) to the bottom of the conversion factor (denominator). Now there is no confusion about which form of the conversion factor you will use. If you have done this correctly the original units on the top (cm) will be cancelled by the same unit in the denominator of the conversion factor.

Example: Consider a car traveling at $\mathbf{3 5} \mathbf{m i s}$ in the metric system. What would be the corresponding length in the English system (miles I hour)?

Solution: Note that velocity is a derived unit and has two units that must be converted: Length (Meters miles) and Time (seconds Hours).

Step 1: The derived unit has consists of two different units - one in the numerator and one in the denominator. Place the numerator unit together with the number on the "top" of the goalpost. Place the denominator units on the "bottom" of the goal post.

Step 2: The top unit will be moved down and to the right, the bottom unit will be moved up and to the right.

35 m	1.094	$\boldsymbol{y} \boldsymbol{d} \boldsymbol{s}$	1 mile	60 s	60 minute	78 miles
\boldsymbol{s}	1 m		$1760 \boldsymbol{y} \boldsymbol{d} \boldsymbol{s}$	1 minute	1 hour	hour

Note that the only unit not cancelled in the numerator is miles. The only unit not cancelled in the denominator is hours. This gives us the final unit of miles/hourwhich the correct unit for the result.

Dimensional Analysis Practice Problems

1. I have 470 milligrams of table salt, which is the chemical compound NaCl . How many liters of NaCl solution can I make ifl want the solution to be $0.90 \% \mathrm{NaCl}$? (9 grams of salt per 1000 grams of solution).

The density of the NaCl solution is 1.0 g solution $/ \mathrm{mL}$ solution.
2. I have a bar of gold that is $7.0 \mathrm{in} \times 4.0$ in $x 3.0 \mathrm{in}$. The density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. The price of gold currently is $\$ 1,945.94$ per ounce. How much is my gold bar worth?
3. The roof of a building is $0.2 \mathrm{~km}^{2}$ During a rainstorm, 5.5 cm ofrain was measured to be sitting on the roof. What is the mass in kg of the water on the roof after the rainstorm?
(Density of rainwater $=1 \mathrm{~g} / \mathrm{mL}$).
4. The bromine content of the ocean is about 65 g of bromine per million g of sea water. How many mL of ocean must be processed to recover $500 . \mathrm{mg}$ of bromine, if the density of sea water is $1.0 \times \mathrm{xl} 0^{3} \mathrm{~kg}!\mathrm{m}^{3}$?
5. Light travels 186000 miles/ second. How long is a light year in meters? (I light year is the distance light travels in one year)

Part Illa: Subatomic Particles, Isotopes and Ions

Element or Ion	Abbreviation	Atomic Number (Z)	Average Atomic Mass (A)	Protons*	Neutrons* (for most common isotope unless otherwise noted)	Electrons*
Oxygen	0	8	16.00			
Bismuth	Bi		209.0			
	F-					
Carbon	C	6	12.01			
Carbon-14	14C		14.00	6		
Pb-208						
		15	30.97			15
			55.845			23
Potassium Ion (cation	K+		39.10			18
Sulfur lon (anion\}	S2-		32.07			

\cdot Calculate the number of protons, neutrons, and electrons for the most prevalent isotope

Average Atomic Masses:

Silver has two isotopes, one with 60 neutrons and the other with 62 neutrons. Give the chemical notation for each of these isotopes and calculate the relative abundance for each isotope given that the average atomic mass for silver is 107.87 amu.

Potassium has three isotopes. The number of neutrons and the natural abundance of these are: 20 neutron (93.23%); 21 neutrons (0.012%); and 22 neutrons (6.73%). Give the chemical notation for each of these isotopes and calculate the average atomic mass for potassium.

Alpha particle $\quad \backslash \mathrm{He} \quad$ (an alpha particle is a helium nucleus)
Proton ${ }^{1} 1 \mathrm{H}$ (the most common hydrogen nucleus is a proton)

Neutron 'on

Electron $\quad-{ }^{0} 1 \mathrm{le}$ or ${ }^{0}-1 \quad$ (also called a beta particle)
Positron $0_{\text {p }}$ ar il

Gamma ray ${ }^{\circ}$ oy
Write out or complete the following nuclear reactions.
I) Phosphorus-32 decays by beta emission to form sulfur-32.
2) Francium-212 $\left\{2^{12}\right.$ a1 Fr) decays by alpha emission.
3) Sodium-24 decays by beta emission.
4) Fluorine-18 decays to oxygen-18 by positron emission.
5) Krypton-76 absorbs a beta particle to form bromine-76.
6) Aluminum-27 absorbs an alpha particle to form phosphorus-30 and a particle.
7) Nitrogen-14 absorbs an alpha particle to form oxygen- I? and emits a particle.
8) When neptunium-239 decays, plutonium-239 is formed and a particle is emitted. (Be sure to include the correct particle in the equation.)
I.A 2.5 gram sample ofan isotope ofstrontium- 90 was formed in a 1960 explosion ofan atomic bomb at Johnson Island in the Pacific Test Site. The half-life of strontium-90 is 28 years. In what year will only 0.625 grams of this strontium- 90 remain?
2. Actinium- 226 has a half-life of 29 hours. If I 00 mg of actinium- 226 disintegrates over a period of 58 hours, how many mg of actinium- 226 will remain?
3. The half-life of isotope Xis 2.0 years. How many years would it take for a 4.0 mg sample of X to decay and have only 0.50 mg of it remain?
4. The half-life of Po-218 is three minutes. How much of a 2.0 gram sample remains after 15 minutes? Suppose you wanted to buy some of this isotope, and it required half an hour for it reach you. How much should you order if you need to use 0.10 gram of this material?

PART IIIs: ELECTRON CONFIGURATION \& ORBITAL DIAGRAMS
In the space below, write the full electron configurations of the following elements:
I. Chlorine
2. Scandium
3. Bromine

In the space below, write the noble gas shorthand electron configurations of the following elements:
I. Chlorine
2. Scandium \qquad
3. Bromine
4. Barium \qquad
5. Cadmium

Determine what elements are denoted by the following electron configurations:
I) $\quad I s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
2) $\quad I s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{1}$ \qquad
3) $\quad \mathrm{Is}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
4) $\quad I s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{\prime 4} 5 d^{6}$
5) $\quad I s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$

Draw the complete orbital (arrow) diagrams for the flowing elements:
6) Phosphorus
7) Iron

Honors Chemistry Worksheet - Wavelength, frequency, \& energy of electromagnetic waves.

Show ALL equations, work, units, and significant figures in performing the following calculations.

$$
\begin{array}{ll}
C=A V & E=\text { hv } \\
C=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { h }=\mathbf{6 . 6 2 6} \times 10 \mathbf{1 0}^{\mathbf{- 3 4} \mathrm{J} \cdot \mathrm{~s}(\text { or } \mathrm{J} / \mathrm{Hz})} \\
& \mathrm{J}=\text { Joule } \quad \mathrm{Hz}=\text { hertz or } \mathrm{s}-{ }^{-1} \text { or } 1 / \mathrm{s}
\end{array}
$$

1. What is the wavelength of a wave having a frequency of $3.76 \times 10^{14} \mathrm{~s}-1$? What is its energy?
2. What is the frequency of a $6.9 \times 10-{ }^{10} \mathrm{~cm}$ wave? What is its energy?
3. What is the frequency of a $7.43 \times 10-{ }^{5} \mathrm{~mm}$ wave? What is its energy?
4. What is the wavelength of a wave carrying $8.35 \times 10-18 \mathrm{~J}$ of energy?

Part IV: Periodic Trends

I. On the blank periodic table, color and label:
a. alkali metals
b. alkaline metals
c. transition metals
d. nonmetals
e. metalloids
f. halogens
g. noble gases
h. inner transition metals
2. On the blank periodic table, color and label.
a. the s block
b. the p block
c. the d block
f. the f block
3. On the blank periodic table, draw arrows to show the following periodic trends across each period and down each group. Be sure to label which way the trend is increasing and which way it is decreasing.
a. Atomic radius
b. Ionization energy
c. Electronegativity

Part IV: Periodic Trends Worksheet

Directions: Use your notes to answer the following questions.

1. Rank the following elements by increasing atomic radius: carbon, aluminum, oxygen, potassium.
2. Rank the following elements by increasing electronegativity: sulfur, oxygen, boron, aluminum.
3. Why does fluorine have a higher ionization energy than iodine?
4. Why do elements in the same family generally have similar properties?
5. Indicate whether the following properties increase or decrease from left to right across the periodic table.
a. atomic radius (excluding noble gases)
b. first ionization energy
c. electronegativity
6. What trend in atomic radius occurs down a group on the periodic table? What causes this trend?
7. What trend in ionization energy occurs across a period on the periodic table? What causes this trend?
8. Circle the atom in each pair that has the largest atomic radius.
a. Al or B
c. Na or Al
e. S or 0
b. 0 or F
d. Br or Cl
f. Mg or Ca
9. Circle the atom in each pair that has the greater ionization energy.
a. Li or Be
c. Ca or Ba
e. Na or K
b. P or Ar
d. Cl or Si
f. Li or K

10 . Define electronegativity.
11. Circle the atom in each pair that has the greater electronegativity.
a. Ca or Ga
b. Ba or Sr
c. Br or As
c. 0 or S
d. Cl or S
e. Li or 0

Part V: Chemical Bonding

Section 1: Ionic Bonding

lonic bonds involve a transfer of electrons from one atom (or atomic group) to another. Cations are positive ions resulting from the loss of electrons. Anions are negative ions resulting from the gain of electrons. Atoms generally lose or gain electrons to achieve a "stable octet" or set of 8 electrons in the valence shell (although there are exceptions!)

Metals tend to have low electronegativity and ionization energy and tend to form cations.

Nonmetals tend to have high electronegativity and tend to form anions.

Things to know:

1. Placement of metals and nonmetals on Periodic Table.
2. The charges/oxidation states taken by elements in different groups of Periodic Table.
3. Common Polyatomic Ions (memorize sulfate/sulfite, carbonate, phosphate/phosphite, permanganate, hydroxide, ammonium, nitrate/nitrite, hypochlorite/chlorite/chlorate/perchlorate - both names and formulas with charges!).

Section 2: Covalent Bonding

Covalent bonds involve a sharing of electrons between atoms. Usually both elements in a covalent bond are nonmetals.

Equal sharing of electrons produces a nonpolar covalent bond and occurs when the bonding atoms have equal or very similar electronegativity. Unequal sharing of electrons occurs when atoms have significantly different electronegativities and results in a polar covalent bond in which one atom has a partial negative charge and the other a partial positive charge.

Things to know:

1. Be able to determine whether a bond is ionic, polar covalent or nonpolar covalent based on the elements bonding and electronegativity chart.
2. Draw a basic Lewis Dot structure showing the placement of all electrons.

Bonding occurs on a spectrum based on the difference in electronegativity between the two atoms involved in the bond. Memorize the rules below and have a general sense of the electronegativities of common elements (\& how the trend runs along the periodic table)!

Difference in electronegativity
$\begin{array}{lllll}0 & 0.5 & 1.0 & \mathbf{2 . 0} & \mathbf{4 . 0}\end{array}$

Nonpolar Covalent	Moderately Polar Covalent	Very Polar-covalent bond	Ionic bond

Rules of thumb:

LIEN > 2.0 Bond is ionic
EN < 0.5 Bond is nonpolar covalent
$0.5 \mathrm{~s} ; \mathrm{EN} \mathrm{s} ; 1.6$ Bond is polar covalent
$1.6<\mathrm{EN} \mathrm{s} ; 2.0$ Bond is polar covalent IF it involves two nonmetals, otherwise ionic.

$\begin{gathered} \hline \mathrm{Li} \\ 1,0 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{Be} \\ 1.5 \end{array}$											$\begin{gathered} B \\ 2.0 \end{gathered}$	$\begin{aligned} & C \\ & 2,5 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 3,0 \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 3,5 \end{aligned}$	F 4,0
$\begin{gathered} \hline \mathrm{Na} \\ 0,9 \end{gathered}$	$\begin{gathered} \hline \mathrm{Mg} \\ 1.2 \end{gathered}$											$\mathrm{i}!!$	$\begin{array}{r} \mathrm{Si} \\ 1,8 \end{array}$	$\begin{gathered} \hline \mathrm{p} \\ 2.1 \end{gathered}$	$\begin{array}{c\|} \hline S \\ 2,5 \end{array}$	$\begin{aligned} & \hline \mathrm{Cl} \\ & 3,0 \end{aligned}$
I\{	Ca	Sc	T1	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br
0,8	1,0	1.3	1.5	1.6	1,6	1.5	1,8	1,9	1.9	1.9	1,6	1,6	1,8	2,1	2,5	3.0
Rb	Sr 1,0	$\begin{gathered} \mathrm{y} \\ 1.2 \end{gathered}$	$\begin{aligned} & \mathrm{Zr} \\ & 1.4 \end{aligned}$	Nb	Mo	TC	Ru	Rh	Pd 2.2	$\begin{array}{\|l} \hline \mathrm{Ag} \\ 1.9 \end{array}$	$\begin{aligned} & \mathrm{Cd} \\ & 1.7 \end{aligned}$	$\begin{aligned} & \ln \\ & 1.7 \end{aligned}$	Sn	$\begin{aligned} & \mathrm{Sb} \\ & 1,9 \end{aligned}$	$\begin{array}{ll} \mathrm{Te} \\ 21 \end{array}$	I 2
Cs	Ba	ta.	Hf	Ta	VV	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At
0.7	0,9	IQ.	1,3	1,5	1,7	1,9	2.2	2,2	2.2	2,4	1,9	1,8	1,9	1,9	2,0	2,2
Fr 0,7	$\begin{aligned} & \mathrm{Ra} \\ & 0.9 \end{aligned}$															

Problems!

Bonding between	More electronegative element and value	Less electronegative element and value	Difference in electronegativity	Bond Type
Sulfur \& Hydrogen				
Sulfur and cesium				
Chlorine and bromine				
Calcium and chlorine				
Oxygen and hydrogen				
 hydrogen				
 Fluorine				
Carbon and Oxygen				

Electron Dot Structures

The Electron Dot structure gives a two-dimensional representation of the molecular structure. The key consideration in drawing a Electron Dot structure is the application of the octet rule, which states that a molecule 's atoms share electrons so that each is surrounded by eight valence elec trons.

The first step in drawing a Electron Dot structure is to determine the skeletal structure of the molecule. The skeletal structure shows which atoms are bonded to a central atom using at least a single bond (represented by a dash). The central atom is usually the first atom in the chemical formula for the molecule.

The following rules give an organized method for drawing a valid Electron Dot Structure:

1. Using the column headings in the periodic table, determine the total number of valence electrons in the molecule by adding the valence electrons contributed by each atom (Ex: in CO2 there should be 16 valence electrons - 4 from the C atom and I 2 from the two O atoms). For a polya to mic ion, subtract one electron for each positive charge, and add one electron for each negative charge.
2. Identify the central atom (if two or more elements, central atom is usually the least elect ronegative). Draw a line-bond structure of the molecule bonding each outer atom to the central atom with a single bond. The line represents two shared electrons (I covalent bond). You can use two dots to replace a line if that is easier for you.
3. Using a single dot to represent 1 electron, place dots around each atom until each atom has an octet of electrons. Remember that a line-bond represents $\mathbf{2}$ electrons. Beware: Hydrogen only gets 2 electrons (not an octet!).
4. Count the electrons in your Electron Dot structure. If the number of electrons in your diagram matches the total number of electrons from Step 1 Congrats! You are done.
5. IF your Electron Dot diagram has MORE electrons then your total count in Step I: Remove electron lone pairs (the dots) and add multiple bonds (the lines) between the central and peripheral atoms until the number of electrons in your diagram matches the number in Step I. (Removing 1 lone pair from EACH of 2 atoms bonded together can be replaced by one line bond!)
6. IF your Electron Dot diagram has LESS electrons than your total count in Step I: Add the extra electrons as dots onto the central atom.
7. Exceptions to the octet rule-Cen tral atoms that are in period 3 or higher can have more than eight valence electrons (a violation of the octet rule). Molecules with B or Al as a central atom (group III) may have a central atom with six valence shell electrons. Molecules with beryllium (Be) as a central atom (group 11) may have a central atom with four valence shell electrons.

Draw Electron Dot structures for the following compounds or polyatomic ions. Draw resonance structures if they exist.

Part VI: Nomenclature of Binary Compounds

** Before you start naming compounds or writing formulas from names be sure to review which elements are metals, transition metals \& nonmetals and the charges they take as well as common polyatomic ions with their charges (makes this much easier!)

Part 1: Determine if the compound is ionic or covalent to decide which set of naming rules to apply:

A. Ionic compound:

i. Compound contains a polyatomic ion
ii. Compound contains a metal and a nonmetal
B. Covalent compound:
i. Compound contains only nonmetal elements

Part 2: Ionic Compound Nomenclature

A. Name the cation
i. Univalent metal cations = same name as the element
a. $\mathrm{Na}+=$ sodium, $\mathrm{Ba}^{2}+=$ barium, $\mathrm{A1}^{3}+=$ aluminium etc.
b. These are usually Group 1, 2 and 13 elements
ii. Multivalent metal cations = same name as element + charge denoted by

Roman Numeral in parenthesis
a. $\mathrm{Fe}^{2}+=\operatorname{Iron}\{\mathrm{II}), \mathrm{Fe}^{3}+=\operatorname{Iron}(\mathrm{III})$
b. Multivalent metal cation are usually in the transition metal block (Iron, Copper, Nickel, Chromium etc.)
c. Silver is always $1+(\mathrm{Ag}+)$ so it has no Roman Numeral
d. Zinc is always $2+\left(\mathrm{Zn}^{2}+\right)$ so it has no Roman Numeral
e. An easy way to remember charges for Al, Zn and Ag is noting that they form a diagonal step down starting with Al going down to the left (3+, 2+ and 1+)
f. Pb and Sn are two metals not in the transition block that can take either the charge $2+$ or $4+$. As such, Pb and Sn always have a Roman Numeral when being named in a compound.
iii. If the cation is a polyatomic ion - it takes the same name as the ion. I.e. $\mathrm{NH} 4+$ is ammonium.

B. Name the anion

i. Anion that is based on a nonmetal element:
a. Use the root of the elemental name
b. Change the suffix to -ide
c. c1-= chlori de, $0^{-2}=$ oxide, $\mathrm{p}^{3}=$ phosphid $\mathrm{e}, \mathrm{N}^{3}=$ nit ride etc.
ii. Anion that is a polyatomic ion:
a. Use the name of the polyatomic ion
b. $\mathrm{SO} 4^{2}=$ sulf ate, $\mathrm{PO} 3^{3}-=$ phosphite, $\mathrm{CrOi}-=$ chromate etc.

C. Examples:

$\mathrm{MgCl} 2=$ magnesium chlorid
FeC'3 = iron (III) chloride
$\mathrm{NH} 4 \mathrm{Cl}=$ ammonium chloride
Sn3(P04)2 = Tin (II) phosphate
(NH4)2SO4 = ammonium sulfate

Part 3: Covalent Compound Nomenclature

A. Name the first element- use Greek Prefixes (except mono)

i. Select the appropriate Greek prefix using subscript of the element
a. Mono=one
b. $\mathrm{Di}=\mathrm{two}$
c. Tri $=$ three
d. Tetra= four
e. Penta = five
f. Hexa = six
g. Hepta = seven
h. Octa = eight
i. Nona = nine
j. Deca = ten
ii. Name the first element using the prefix and the element name:
a. Do not use the prefix mono- for the first element. If there is only one atom of the first element in the compound "mono" is implied
B. Name the second element

1. Select the appropriate Greek prefix using the subscript of the element
ii. Use the root of the element name for the second element
iii. Convert the suffix of the elemental name to -ide.

C. Examples:

$\mathrm{H} 2 \mathrm{O}=$ dihydrogen monoxide (the o from mono- gets dropped in monoxide)
$\mathrm{CO} 2=$ carbon dioxide
$\mathrm{CO}=$ carbon monoxide
PCls = phosphorus pentachloride
S2O3 = disulfur trioxide

1. Use the name to determine the two ions in the compound Fe and SO/ -
2. Write the cation first (remember Roman Numeral = charge on metal cation). Then write the anion. Include charges (for now) $\mathrm{Fe}^{3}+\mathrm{SO} /-$
3. Balance the charges on the two ions to obtain a neutral formula unit. The easy way is to "criss-cross" so that the charge on the cation becomes the subscript of the anion. The charge of the anion becomes the subscript on the cation. Use the lowest whole number ratio of subscripts! Fe 3
4. If the subscript of a polyatomic ion is greater than 1 , put the whole polyatomic ion symbol in parentheses and the subscript outside the parenthesis. $\mathrm{Fe}{ }_{2}\left(\mathrm{SO}_{4}{ }^{2}\right)_{3}$
5. Erase any ion charges in the formula $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Examples: Cation + Monoatomic Anion

sodium fluoride $=\mathrm{NaF}$, calcium bromide $=\mathrm{CaBr} 2$, ammonium chloride $=\mathrm{AICl}_{3}$, iron $\{\mathrm{II})$ oxide $=\mathrm{FeO}$, iron $\{I I I)$ oxide $=\mathrm{Fe}_{2} \mathrm{O}_{3}$ Examples: Cation + Polyatomic Anion

Covalent

1. $1^{\text {st }}$ Greek prefix denotes subscript of first element
2. Write element symbol and subscript
3. $2^{\text {nd }}$ Greek prefix denotes subscr ipt of second element 4. Write symbol and subscript for second element

Examples:

carbon monoxide= CO dinitrogen tetraoxide $=\mathrm{N}_{2} \mathrm{O}_{4}$ sulfur hexafluoride $=\mathrm{SF}_{6}$ dihydrogen monoxide $=\mathrm{H}_{2} \mathrm{O}$ dihydrogen dioxide $=\mathrm{H}_{2} \mathrm{O}_{2}$ carbon tetrahydride=- ... H_{4}

Naming Binary
Chemical Compounds

Part VI: Problems - More Naming Practice!

vanadium (V) phosphate \qquad
sodium permanganate \qquad
MnF2 \qquad
$\mathrm{Ni}(\mathrm{SO3}) 2$ \qquad
phosphorus triiodide \qquad
H3P04 \qquad
HI

Pb3N4 \qquad

SiCl4 \qquad
HClO_{2} \qquad

Sodium sulfate \qquad
Hydrosulfuric acid \qquad
\qquad
Nitrogen trifluoride \qquad
Calcium phosphide \qquad
B2Si \qquad
PCIs \qquad
\qquad
Percloric acid \qquad
Manganese (IV) carbonate \qquad
CsH10 \qquad
\qquad
Carbon disulfide \qquad
\qquad
Iron (III) nitrate \qquad
Copper (II) phosphite \qquad
\qquad

Sulfur hexachloride \qquad
\qquad

Part VII: Mole Conversions Notes \& Practice Worksheet

There are three mole equalities. They are:
$1 \mathrm{~mol}=6.02 \times 10^{23}$ particles
$1 \mathrm{~mol}=$ molar mass in grams (periodic table)
$1 \mathrm{~mol}=22.4 \mathrm{~L}$ for a gas at STP

Each equality can be written as a set of two conversion factors. They are:

$2 \underline{2.4} \underline{L}$) or $(:$ mole) at Standard Temperature and Pressure (OCC and 1 atm) ${ }^{6}$ Inwle 22.4 L

Example Problems:

1. How many moles of magnesium is 3.01×1022 atoms of magnesium?

$$
\left.3.01 \times 10^{22} \text { atoms } \begin{array}{c}
1 \mathrm{~mole} \\
\left(6.02 \times 10^{23}\right. \text { atoms }
\end{array}\right)=5 \times 10-0^{2} \text { moles }
$$

2. How many molecules are there in 4.00 moles of glucose, C 5 H 12 O 5 ?

$$
\begin{aligned}
& \text { 6. } 02 \times 10^{23} \text { molecules) } 024 \\
& 4.0 \mathrm{mo} \text { les }(---\overline{1} \text { mole }--=2.41 \times 1 \quad \text { molecules }
\end{aligned}
$$

3. How many moles in 28 grams of CO 2 ?

Molar mass of CO2 $1 \mathrm{C}=1 \times 12.01 \mathrm{~g}=12.01 \mathrm{~g}$ $20=2 \times 16.00 \mathrm{~g}=\underline{32} . \underline{00} \mathrm{~g}$ $44.00 \mathrm{~g} / \mathrm{mol}$

$28 \mathrm{~g} \mathrm{CO2}\left(\underline{1}_{\underline{\text { mole }})}\right)=0.64$ moles CO 2
 44.00 g

4. What is the mass of 5 moles of Fe 2 O 3 ?

Molar mass Fe2O3 $2 \mathrm{Fe}=2 \times 55.6 \mathrm{~g}=111.2 \mathrm{~g}$

$$
30=3 \times 16.0 \mathrm{~g}=48.0 \mathrm{~g}
$$ $159.2 \mathrm{~g} / \mathrm{mol}$

1592 moles $\frac{\mathrm{Fe}_{2} \mathrm{3} . \mathrm{L}}{\boldsymbol{l} \text { mole }} \boldsymbol{g}$) $=800$ grams Fe 2 O 3
5. Determine the volume, in liters, occupied by 0.030 moles of a gas at STP.

$$
0.030 \mathrm{~mol}\left(\frac{\mathbf{2 2}}{\left.\underline{1} \frac{\boldsymbol{4}}{\boldsymbol{m} \boldsymbol{L}} \underline{\boldsymbol{L}}\right)}=0.67 \mathrm{~L}\right.
$$

Mixed Mole Conversion Examples: Given unit Moles Desired unit
7. How many oxygen molecules are in 3.36 L of oxygen gas at STP?
$3.36 \frac{\text { L(1 }}{\mathbf{2 2} .4 \boldsymbol{n} \boldsymbol{L}} \frac{\text { nw })(6}{} \frac{02 \mathrm{x}}{} \frac{1023}{1 \text { nwle }} \frac{n w l e c u l e s)}{}=9.03 \times 1022$ molecules
8. Find the mass in grams of 2.00×1023 molecules of $F 2$

Molar mass $2 \mathrm{~F}=2 \times 19 \mathrm{~g}=38 \mathrm{~g} / \mathrm{mol}$

Problems I: Mole Conversions Practice - Show Work

1. How many moles are 1.20×1025 atoms of phosphorous?
2. How many molecules are in 4.50 grams of N 2 O 5 ?
3. What is the volume of 42.8 grams of water vapor at STP?
4. Aspartame is an artificial sweetener that is 160 times sweeter than sucrose (table sugar) when dissolved in water. It is marketed by G.D. Searle as Nutra Sweet. The molecular formula of aspartame is C 14 H 18 N 2 O 5 .
a) Calculate the gram molar mass of aspartame.
b) How many moles of molecules are in 10 g of aspartame?
c) How many molecules are in 5 mg of aspartame?
d) How many atoms of nitrogen are in 1.2 grams of aspartame?

Chemical Reactions Review Sheet

Types of Chemical Reactions:

Combination or Synthesis
Decomposition
Single Replacement
Double Replacement

$$
\begin{aligned}
& A+B \quad A B \\
& A B \quad A+B \\
& A+B C \quad B+A C \\
& A B+C D \quad A D+C B
\end{aligned}
$$

Can be a) acid-base if the reactants are acid \& base and products are salt \& water.
b) can be precipitation if a solid product forms

Hydrocarbon Combustion

Oxidation-Reduction - Involve a transfer of electrons. Occurs during combustion, single replacement and can occur during synthesis and decomposition.

Problems:

1. A reaction occurs when aqueous lead (II) nitrate is mixed with an aqueous solution of potassium hydroxide. Write an overall, balanced equation for the reaction, including state designations.
2. For the following three reactions, label the type, predict the products (make sure formulas are correct), and balance the equation.

3. In the following equations, label the oxidized element and the reduced element.
a. $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl} 2(\mathrm{~g}) \quad 2 \mathrm{NaCl}(\mathrm{s})$
b. $2 \mathrm{NaBr}(\mathrm{aq})+\mathrm{Cl} 2(\mathrm{~g}) \quad 2 \mathrm{NaCl}(\mathrm{s})+\mathrm{Br} 2(\mathrm{I})$

C...s.r "

- Salts of alkali metals and ammonia

Nitrate salts and chlorate salts
Sulfate salts
. Chloride salts

1 Carbonates, phosphates, chromotes, sulfides, and hydroxides

Solubility Exceptions

Soluble Some lithium compounds

Soluble Few exceptions
Soluble Compounds of $\mathrm{Pb}, \mathrm{Ag}, \mathrm{Hg}$, Ba, Sr, and Ca

Soluble Compounds of Ag and some compounds of Hg and Pb

Most are Compounds of the alkali insoluble metals and ot ammonia

Reaction Review

1. What are 4 signs that a reaction is taking place? Think back to the lab:
2. What is does it mean when a substance is reduced? When it is oxidized? How is a single replacement reaction an oxidat ion-reduction reaction?
3. What are the 5 main types of chemical reactions? What type of reaction is an acid-base neutralization?
4. What does $(s),(g),(I)$ and $(a q)$ mean when placed near a chemical formula in an equation?
A) WRITE THE FORMULA FOR EACH MATERIAL CORRECTLY.
B) BALANCE THE EQUATI ON . SOME REACTIONS REQUIRE COMPLETI ON.
C) FOR EACH REACTION TELL WHAT TYPE OF REACTION IT IS.
D) For double and single replacement reactions - write the net ionic equations.
5. lead II nitrate and sodium iodide react to make lead iodide and sodium nitrate.
6. calcium carbonate decomposes when you heat it to leave calcium oxide and carbon dioxide.
7. ammonia gas when it is pressurized into water will make ammonium hydr oxide.
8. aluminum hydroxide and sulfuric acid neutralize to make water and aluminum sulfate.
9. tetracarbon octahydride is burned in oxygen
10. sulfuric acid reacts with zinc

Net Ionic Eqnation Worksheet

READ THIS: When two solutions of ionic compounds are mixed, a solid may fonn. This type ofreaction is called a precipitation reaction, and the solid produced in the reaction is known as the precipitate. You can predict whether a precipitate will fonn using a list of solubility rules such as those found in the table below. When a combination ofions is described as insoluble, a precipitate fonns. There are three types of equations that are commonly written to describe a precipitation reaction. The molecular equation shows each of the substances in the reaction as compounds with physical states written next to the chemical fonnulas. The complete ionic equation shows each of the aqueous compounds as separate ions. Insoluble substances are not separated and these have the symbol (s) written next to them. Water is also not separated and it has a (I) written next to it. Notice that there are ions that are present on both sides of the reaction arrow $->$ that is, they do not react. These ions are known as spectator ions and they are eliminated from complete ionic equation by crossing them out. The remaining equation is known as the net ionic equation.

For example: The reaction of potassium chloride and lead II nitrate
Molecular Equation: $2 \mathrm{KCI}(\mathrm{aq})+\mathrm{Pb}(\mathrm{N} 0) ,2(\mathrm{aq})->2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbCI},(s)$
Complete Ionic Equationc(aq) $+\mathrm{ZCr}(\mathrm{aq})+\mathrm{Pb}+{ }^{2} \quad(\mathrm{aq} 2)--1 \mathrm{NO}^{3} \quad(a t j), 42 \mathrm{~K}+(2 \mathrm{NOJ}-(\mathrm{aq})+\mathrm{PbCI} 2(\mathrm{~s})$
Net Ionic Equation: $\mathrm{ZCr}(\mathrm{aq})+\mathrm{Pb}+{ }^{2} \quad(\mathrm{aq})->\mathrm{PbCI}$, (s)
Directions: Write balanced molecular, ionic, and net ionic equations for each of the following reactions. Assume all reactions occur in aqueous solution. Include states of matter in your balanced equation.

1. Sodium chloride and lead II nitrate

Molecnlar Equation:

Net Ionic Equation:

2. Sodium carbonate and Iron II chloride

Molecular Equation:

Net Ionic Equation:

3. Ammonium phosphate and zinc nitrate

Molecular Equation:

Net Ionic Equation:

4. Iron III chloride and magnesium metal

Molecular Equation:

Net Ionic Equation:

5. Silver nitrate and magnesium iodide

Molecular Equation:

Net Ionic Equation:

6. Aluminum and copper (II) perchlorate

Molecular Equation:

Net Ionic Equation:

7. Sodium and water

Molecular Equation:

Net Ionic Equation:

8. Zinc and hydrochloric acid Molecular Equation:

Net Ionic Equation:

Steps to Find Empirical \& Molecular Formulas

Remember this:
"Percent to mass, Mass to mole,
Divide by small, Make it whole"

1. Determine the mass in grams of each element present in the sample. "Percent to mass"
lfthe information in the problem is in terms of percent composition of each element
a) assume you have 100 g ofthe sample to start with
b) The grams of each element (out of the 100 g sample) will just be the numerical value of its percent composition.

EXAMPLE: You have a sample that is 40.0% carbon, 6.73% hydrogen and the rest oxygen. Find the empirical and molecular formulas.

Step I: $40.0 \%+6.73 \%=46.73 \%$. The percentage of oxygen is $100 \%-46.73 \%=53.27 \%$
If I have 100 g of sample to start with, I have:
40.0 grams Carbon, 6.73 grams Hydrogen and 53.27 grams Oxygen
2. Calculate the number of moles of each element. "Mass to mole"

Step 2: Moles of Carbon=40.0g C x I mo! C/12.01g C $=3.331 \mathrm{mo}!\mathrm{C}$
Moles Hydrogen $=6.73 \mathrm{~g} \mathrm{H} \mathrm{x} \mathrm{I} \mathrm{mo!} \mathrm{H} / 1.0 \mathrm{lg}=6.663 \mathrm{mo}!\mathrm{H}$
Mole Oxygen $=53.27$ g Ox I mo! 0/16.0 g = $3.33 \mathrm{mo}!0$
DO NOT ROUND THESE NUMBERS
KEEP SEVERAL DECIMAL PLACES
3. Divide each by the smallest number of moles to obtain the simplest whole number ratio.
"Divide by small"
Step 3: The molar ratio of the elements in my compound is C3.331H6.663O3.33. I want a whole number ratio, so I will divide all the subscripts by the smallest number of moles (3.33 I) to get:

C1H2O1 so my empirical formula is CH 2 O
If your number after dividing are values like 2.07, I.I etc. then round to the nearest whole number. If they are values like $3.5,2.333$ etc., then go to step 4 .
4. If whole numbers are not obtained' in step 3), multiply through by the smallest integer that will give all whole numbers

"Make it whole"

Let's say that my empirical formula turned out to be C2.mH4O2. 2.333 is not close enough to 2 to round down to 2 . But I can multiply my formula through by 3 to get this:

C1H12O6
5. Finding molecular formula: If the molar mass of your empirical formula matches the molar mass of the final compound (as stated in the problem) Hooray! You are done: your empirical formula IS your molecular formula.

Step 5: For my example in step 1, it says that the molecular weight (molar mass) ofmy compound is $180.18 \mathrm{~g} / \mathrm{mol}$

My empirical formula is CH 2 O from step 3 has a molar mass of $(12.01+2 \mathrm{xl} .01+16)$ $\mathrm{g} / \mathrm{mol}=30.03 \mathrm{~g} / \mathrm{mol}$. So my empirical formula is not my molecular formula.

Now, divide molar mass of compound/molar mass of empirical formula:

$$
180.18 \mathrm{glmol}-\mathrm{c} 30.03 \mathrm{~g} / \mathrm{mol}=6
$$

The molar mass ofmy compound is 6 times the molar mass ofmy empirical formula.
Multiply the empirical formula subscripts by 6 to get the final molecular formula:

$$
6(\mathrm{CH} 2 \mathrm{O})=\mathbf{C} 6 \mathrm{H} 1206 \quad \text { The compound in my sample is glucose! }
$$

Steps to Solving Limiting Reagent Problems

Suppose 13.7 g ofC2H2 reacts with 18.5 g 02 according to the reaction below. What is the mass of CO 2 produced? What is the limiting reagent?

$$
2 \mathrm{C} 2 \mathrm{H} 2(\mathrm{~g})+\mathrm{S} 02(\mathrm{~g})-\cdots+4 \mathrm{C} 02(\mathrm{~g})+2 \mathrm{H} 20(\mathrm{f})
$$

I. Find the mass of product yielded by the given amount of the first reactant. You can use either product (CO 2 or H 2 O), but since the question asks about CO 2 , it will be easier to use this product:

$$
13.7 \mathrm{~g} \mathrm{C} 21 \mathrm{li} \quad \frac{1 \text { mole C2H2} 2}{26.04 \mathrm{~g} \mathrm{C} 2 \mathrm{H} 2} \quad \frac{4 \text { mole CO2 }}{2 \text { mole C2H2}} \frac{44.02 \mathrm{~g} \mathrm{CO} 2}{\text { I mole CO} 2}=\underline{146.3 \mathrm{~g} \mathrm{CO}}
$$

2. Find the mass of the same product (in this case CO2) yielded by the given amount of the second reactant.
$\underline{18.5 \mathrm{~g} 02} \frac{1 \text { mole } 02}{32.00 \mathrm{~g} \mathrm{02}} \quad \underline{5 \text { mole 02 CO2 }} \quad \underline{44.02 \mathrm{~g} \mathrm{CO} 2} \quad$ I mole CO2 $\quad \mid \underline{20.4 \mathrm{~g} \mathrm{CO} 2}$
3. Since the 18.5 grams of 02 produces less CO2, it is the limiting reagent in this problem. This amount of 02 gets used up first and "limits" how much CO2 can be produced. The amount of CO 2 that can be produced is 20.4 grams (which you already calculated!)
4. You can repeat steps 1 and 2 for any number of reactants that you have a given mass for. The limiting reagent will ALWAYS be the reactant that produces the least amount of product (because it gets used up first).
5. Finding the amount of excess reagent: The excess reagent is the one that is NOT the limiting reagent. There will be some of this reagent leftover after the limiting reagent is completely used up.

Figure out how much of the excess reagent must react completely with the given amount of the limiting reagent. Then subtract this amount from the given amount of the excess reagent.

18.5 g 02	I mole 02	2 mole C2H2	$26.02 \mathrm{~g} \mathrm{C} 2 \mathrm{H} 2=6.02 \mathrm{~g}$ C2fu used
	32.00 g 02	5 mole 02	I mole C2H2

13.7 g of C 2 H 2 total -6.02 g of C 2 H 2 used $=\mathrm{j} 7.68 \mathrm{~g}$ C2fu excess (leftover)

1. a) Nicotine is a stimulant and an addictive chemical found in tobacco. An analysis of nicotine produces the following percent composition: 74.03% carbon, 17.27% nitrogen, and 8.70\% hydrogen. What is the empirical formula of nicotine?
b) Further tests show that the molar mass of nicotine is $162.23 \mathrm{~g} / \mathrm{mol}$. Given this information, what is the molecular formula of nicotine?
2. An ionic sample with a mass of 0.5000 g is determined to contain the elements indium and chlorine. If the sample has 0.2404 g of chlorine, what is the empirical formula of this ionic compound?
3. A 16.4 g sample of hydrated calcium sulfate is heated until all the water is driven off. The calcium sulfate that remains has a mass of 13.0 g . Find the formula and the chemical name of the hydrate.
\qquad
a. What type of reaction is written above? \qquad
b. Predict the products of the reaction and balance it.
c. If I start with 5.00 grams of C 3 Ha and 5.00 grams of 02 . what is the limiting reagent? What is my theoretical yield of the carbon containing product?
d. I get a percent yield of 75%. How many grams of the carbon containing product did I make?
4. Magnesium undergoes a single replacement reaction with hydrochloric acid.
a) Write the Balanced Equation:
b) Which element is oxidized? _-- Which element is reduced? .--
c) How many grams of hydrogen gas can be produced from the reaction of 3.00 g of magnesium with 4.00 g of hydrochloric acid?
d) Identify the limiting and excess reactants. How many grams of the excess reagent are leftover?
e) If the hydrogen gas is produced at $48^{\circ} \mathrm{C}$ and 2.5 aim of pressure, what is the volume produced in liters?
5. Sulfur reacts with oxygen to produce sulfur trioxide gas.
a) Write the Balanced Equation:
b) If 6.3 g of sulfur reacts with 10.0 g of oxygen, what is the theoretical yield of sulfur trioxide gas in grams?
c) What is the limiting reagent? How many grams of the excess reagent is leftover?
d) The sulfur trioxide gas produced had a volume of 5.4 Land was produced at $98^{\circ} \mathrm{C}$. What is the pressure of the gas in kPa ?

Part IX: Gas Laws, Molarity, pH and Putting it all Together

1. The following questions pertain to the reaction below:

$$
\ldots \mathrm{HBr}+\ldots \mathrm{Ca}
$$

a. What type of reaction is shown above? \qquad
b. Predict products and then balance the reaction.
c. Name the ionic product of the reaction. \qquad
d. Which element is oxidized? \qquad Which element is reduced? _-_--
e. 1.7 grams of Ca are mixed with 850.6 ml of 0.043 M HBr . Whal is the maximum theoretical yield of the gaseous product in grams?
f. How many grams of the excess reagent are leftover?
g. What is the pH of the HBr solution?
h. What is the OH . concentration of the HBr solution?
i. If the gas is produced at $89^{\circ} \mathrm{C}$ and 1.7 atm of pressure, what is the volume of gaseous product in ml ?
j. The pressure of the gas is changed to 250 mmHg and the volume is changed to 1.54 I . Whal is the temperature of the gas now?

Question 2: The following questions pertain to the reaction below

$\ldots \mathrm{H} 3 \mathrm{PO} 4(\mathrm{aq})+\quad \mathrm{Ca}(\mathrm{OH}) 2(\mathrm{aq})$
a) What type of reaction is shown above? (HINT:
It could be two of the types we learned about because one product is insoluble which one? \qquad

Predict the products and balance the reaction.
c) Write the net ionic reaction for the reaction above.
d) Name the reactants and products. Identify acid, base, conjugate acid and conjugate base.
e) If I have 7.62 grams of $\mathrm{Ca}(\mathrm{OH}) 2$, what volume of 0.050 M HJPO 4 would be required to react with it completely?
f) In the reaction, only 6.89 grams of the solid product were produced. What is the percent yield of the reaction?
g) How many grams of the $\mathrm{Ca}(\mathrm{OH}) 2$ remained unreacted?

Question 3:

It takes combustion of 58.8 ml of liquid propane (C 3 Ha), which has a density of $0.493 \mathrm{~g} / \mathrm{cm}^{3}$, to cook my hamburger. If air is 21.0% by volume 02 , how many liters of air at $27.0^{\circ} \mathrm{C}$ and 105.0 kPa will it take to cook my burger? (NOTE: this is not happening at STP!)
a) Write and balance the combustion reaction for propane
b) Calculate the grams of propane used to cook the burger
c) Calculate the moles of oxygen used to cook the burger
d) Calculate the volume of 02 used to cook the burger
e) Calculate the volume of air used to cook the burger

